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J .  PHYS.  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  VOL. 2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Self-consistent perturbation series for stationary 
homogeneous turbulence 

R. PHYTHIAN 
Department of Physics, University College of Swansea 
MS. received 21st August 1968 

Abstract. A self-consistent perturbation procedure is developed for the problem of 
stationary homogeneous turbulence of an incompressible fluid. I t  differs from the 
theories of Herring and Edwards in that the direct-interaction approximation is 
obtained in the first non-trivial approximation. It provides a simple means of obtaining 
equations relating the two-velocity correlation function and response function without 
necessitating the analysis of diagrams, representing terms of a perturbation series, of 
large order as required in the formalism of Wyld and Lee. The relation to the work of 
the authors mentioned is briefly discussed. 

1. Introduction 
A systematic use of the perturbation theory familiar in quantum mechanics was intro- 

duced into the problem of hydrodynamic turbulence by Wyld (1961). The  zeroth-order 
term of this perturbation series describes the fluid in the absence of the non-linear terms of 
the Navier-Stokes equation. The disadvantage of this approach is that it is necessary to 
carry out a rather elaborate analysis of the ‘Feynman’ diagrams, representing the higher- 
order terms of the series, in order to obtain equations relating quantities of physical interest, 
such as the two-velocity correlation function and the response function. The  analysis is 
similar to that involved in deriving the Dyson equations of quantum electrodynamics but is 
more complicated. In  fact, the equations given in Wyld’s paper are incorrect for the 
actual. turbulence problem, although valid for a simplified model system, as was pointed 
out by Lee (1965). Different equations have been given by Lee which have been checked 
to reproduce the perturbation series correctly up to sixth order. The direct-interaction 
approximation of Kraichnan may be obtained from these theories by retaining only the 
simplest terms in the equations. 

An alternative approach, introduced by Edwards (1964), bases a perturbation expansion 
on a zeroth-order term which allows approximately for the transfer of energy by the 
non-linear terms of the Navier-Stokes equation and which is determined self-consistently. 
In  his paper, Edwards derives two different series: the first of these is for the probability 
density of the velocity field at a given time, the second is for the probability density of the 
velocity throughout all time. In  deriving the former, use is made of the fact that a closed 
functional-differential equation for the probability density can be written down when the 
external ‘stirring’ forces have a Gaussian distribution with delta-function correlations in 
time (see also Novikov (1965)). In  the series obtained, the external parameters, i.e. the 
viscosity and the correlation function of the external forces, appear only in the zeroth- 
order terms. This property does not seem to be shared by the second expansion. The  
derivation of higher-order terms proves to be very tedious in this approach. 

A somewhat similar method is employed by Herring (1965), again for the case of the 
probability distribution at a particular time, and with the assumption that the applied 
forces have a Gaussian distribution with delta-function time correlations. The  series 
obtained differs from that of Edwards. 

It is interesting to note that neither of these self-consistent expansions yields the 
direct-interaction approximation of Kraichnan (which has received some experimental 
support) and in this respect they differ from the original perturbation theory of Wyld. 

In  the present work we introduce a self-consistent perturbation procedure which does 
yield the direct-interaction approximation as the simplest non-trivial approximation. 
Instead of deriving an expansion directly for the probability distribution as described 
above we proceed by writing down a series solution for the Navier-Stokes equation. 
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182 R. Phythian 

This is based on a zeroth-order equation which is different for each realization of the 
external force field. The zeroth-order equation for the velocity field contains (i) a modified 
viscous dissipation term allowing for the transfer of energy from each Fourier mode by 
inertial as well as by viscous forces, and (ii) a random force, which differs from the external 
force, to allow for the transfer of energy to each mode by the inertial forces as well as by the 
external force. These two quantities are chosen so that, on averaging over all realizations of 
the Gaussian external force, the zeroth-order equation gives the exact two-velocity correlat- 
ion function and response function. 

We finally obtain the correlation function and response function expressed as infinite 
series, each term of which except the first contains only these same quantities. The  zeroth- 
order terms involve the viscosity and the correlation function of the external force. The  
direct-interaction approximation is obtained by making the simplest non-trivial truncation 
of these series. The  formalism as described above differs from that of Wyld in that no 
‘dressed’ vertex appears, but this may be incorporated in a straightforward manner as 
described later. 

2. Derivation of the expansion 
2.1. Preliminary considerations 

In  order to keep the notation as simple as possible we shall present the argument for the 
case of the Burgers model equation. The  whole procedure goes through in just the same 
way for the Navier-Stokes equation when the pressure term has been eliminated in the 
usual way. The  ‘velocity’ field ~ ( x ,  t )  satisfies the equation 

av a2v av 
- = v- -v-+f(x, t )  
at 8x2 ax 

where f ( x ,  t )  is an applied random ‘force’ field which is statistically homogeneous and 
stationary and has a Gaussian distribution with zero mean. 

We are interested in the resulting homogeneous stationary statistical distribution of the 
velocity field. It is convenient to consider the ‘fluid’ enclosed in a space-time box of 
volume VT and satisfying periodic boundary conditions so that the usual Fourier de- 
compositions may be introduced: 

1 
f ( x ,  t )  = - 2 f(k, U )  exp(ikx +iwt) 

vTk,w 
where the summation extends over all wave numbers (A ,  w )  of the form (2vn/V,  2 n m / T ) ,  
where n ,  m are integers. The Fourier transforms must satisfy the reality conditions 

v*(k, w) = U( - k ,  - w )  

f * ( k ,  w )  = f( - k ,  - U ) .  

We also assume that, in each realization, the centre of mass of the fluid remains at rest so 
that v(0, U )  andf(0, w )  are both zero. In  the limit as V and T tend to infinity, we have 

The Fourier components are seen to satisfy the equation 

h 
VT 

iwa(k, w )  = -vk2a(k, w )  +-- 2 M(k,  w ;  k, ,  w,,  k,,  w2)z(k1, wl)v(kz ,  0,) + f ( k ,  U )  (1) 

and an expansion parameter X has been introduced for future convenience. 
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Homogeneity and stationariness lead to the following conditions on the expectation 
values of products of the Fourier transforms 

w ) f ( k ’ ,  a’)) = VTsl,+k’,OSwiw,,,h(k,.w) 

( v ( k ,  U)z!(k’,  U’)) = ~ T 6 k + k ’ , 0 s w + w ‘ , 0 u ( k ,  

This is in accord with the usual definitions of the spectral functions h(k, w ) ,  U(k, 0) in the 
limit as V ,  T --f CO 

1 
<f(x, t ) f (x ’ ,  t ’ ) )  = - /dkJ  dwh(k ,  w )  exp(ik(x-x’) +iw(t- t ’ ) )  

( 2 4 2  

{u(x ,  tjv(x’, t ’ ) )  = - 1 dk  / dw U(K, w )  exp{ik(x-x’) +iw(t-t’)). 
(2Tl2 

The Gaussian nature of the distribution off leads to the pairing property by means of 
which expectation values of an even number of the f can be written as the sum of all possible 
pairings, for example 

( f  (kl, U l ) f  P 2 ,  w M k 3 , w 3 ) f ( k 4 , w d  ) = ( f  (kl, w d f  (k2 ,  w2) ) ( f  (k3, W 3 ) f  (k4, U*) ) 
+ W l ,  4 f  ( k 3 , 0 3 )  ) ( f  (A29 w2)f  (A49 4 ) 
+ ( f  (kl, w l ) f ( k 4 ,  w4)) ( f  (k2, w 2 ) f  (k3, w3) > 

while the expectation value of the product of an odd number of thefis zero. 

2.2. Derivation of the perturbation series for the velocity 
The expansion of Wyld is obtained by iterating equation (1) with the zeroth-order 

term given by setting h = 0. Instead of following this approach, we rewrite the equation in 
the form 

iwv(k, w )  = x ( k ,  w)v(k, w )  +g(k ,  w )  +Ip(k, w)v(k,  w )  +e(k, w )  

h 
VT  +- 2 W k ,  w ;  k1, w1, k2, w & O , ,  w,)v(k,, w2) ( 2 )  

where 
x ( k ,  w )  +R(k,  w )  = -vk2 

g ( k ,  w )  + e ( h  0) = f ( k ,  U). 

The function g(k ,  w )  is a random function which is functionally dependent on f(k, U ) .  

The quantity a(k, w )  is not a random function, i.e. it is the same for each realization of the 
force field; it does, however, depend on the statistical distribution off. In  addition, both g 
and 0: satisfy the usual reality conditions. 

The  zeroth-order equation on which the perturbation expansion is based is 

iwu(k, w )  = a(k, w)v(K, U )  +g(k ,  w )  (3)  
where the quantities a and g will eventually be chosen in such a way that certain statistical 
properties of the velocity field are the same for equation (3) as for the full equation (1). 
Clearly, it is possible in principle to choose them so that the equations are identical, but 
since this is impracticable we shall be content with imposing the conditions that the two- 
velocity correlation function and the response function should be the same for these two 
equations. 

When his zero, the obvious choice is made 

a(k, w )  = -vk2 

g ( k ,  w )  = f(h w )  
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so that equations (1) and (3) are identical, This means that R and e vanish when h is zero, 
and we shall assume that they may be expanded in powers of A, whence 

R(k,  U )  = hR1(k, w) +X2Rz(k, U )  + ... 
e (k ,  w) = Xe,(k, U )  +X2e2(k, w) + .., . 

Starting with the zeroth-order approximation for ~ ( k ,  w) given by equation (3), namely 
g(k, w)(iw-cc(k, w)}-I, and using the series for R and e above, we can express v(k, w) as a 
series in increasing powers of A :  

iw - a(k, w) 

g(k, c(k,”w) = 

+ 
iw - ~ ( k , w ) } ~  iw - a(k, w) 

1 w; k w 1 ,  kz,w,)‘dk1, w,lg(k2,w2) 
+E 1 {iw - x(k,w)}{iwl - a(kl,wl)}{iw2 - a(k2,w2)] 

> w)g(k,w) e!@, U )  R 1 2 ( + w w )  
w ) } ~  iw - x ( k ,  w )  {iw - ~ ( k ,  w ) ) ~  

+- + 
R,(k,w)e,(k,w) 1 RI@, w ) i v ( k , w ;  kl, w1, k2, w,)g(k1,w,)g(k2, w2) - 

+E 2 (iw - rA(k, w>>{iwl - a(k,, w1))2(iw2 - x ( k 2 ,  w2)}  

+E 2 {iw -&(A, w>>{iwl - a(k,, wl)>~iw2 - x ( k 2 ,  w2)> 

+ +- c {io  - x ( k ,  w ) } ~  VT {iw - a(k, w)}2(iw1 - a(k,,w1)){iw2 - a(k2,w2)}  
2 M ( k , w ;  k l , W l ,  k 2 , W Z ) R l ( k l ,  w1)g(k1, w1)g(kz, w2) 

; q % w ;  k l ,U l ,  kz,w,)e,(k, ,  W l ) Z ( K 2 ,  0 2 )  2 

2 
V2T2 -k- 2 A4[(ktw; kl,wl, k 2 , w 2 ) 1 T f ( k 2 , w 2 ;  kl’,wl’, k 2 ’ , W 2 ’ ) g ( k l ,  wl)g(kl’, wll)  

xg(kz’, w 2 0  

x [(iw - a(k, w)}(iwl - x ( k , ,  wl)>(iwz - %(A2, w2)} 

(4) 
The terms of the series may conveniently be represented by diagrams similar to the 

‘tree’ diagrams of Wyld. The diagrams corresponding to the terms written down in 
equation (4) are respectively 

Figure 1 
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where the wave number labels on the lines have been omitted from the second-order 
diagrams for brevity. From these examples, the general rules for such diagrams will be 
apparent . 
2.3. Self-consistency conditions 

We now require that certain statistical properties are the same for the zeroth-order 
equation as for the full equation. First of all we must ensure that the random function 
g(K, U )  is such that the velocity field which is a solution of equation (3) has a homogeneous 
and stationary distribution with zero mean. This will certainly be so if we have 

unless 

and 

Inaddition,it transpires that we may impose the further restriction that theg have a Gaussian 
distribution. The  spectral function is denoted by p(K ,  U ) ,  so we have 

M A ,  w)g(h ' ,  U ' )  > = VT&+,~,,~,W,,P(k, U ) .  

The remaining conditions are that the response function and the two-velocity correlation 
function are the same for the two equations. The response function is defined as follows: 
an infinitesimal perturbing force 7(K, w )  is added to the right-hand side of the equation, 
the resulting change in the velocity being given by 

1 
6 @ ( k ,  U )  = 7 2 S(k, w ;  K ' ,  w ' )q(k ' ,  U ' )  +0(72). 

TIC'," 
The quantity S depends on the particular realization of the random functionf, but, averag- 
ing over these realizations, we obtain the response function S(K, w )  

( S ( k ,  w ; k ' ,  U ' ) )  = VT6,,,&,,tS(k, w ) .  

For the zeroth-order equation the perturbed equation is 

so that 

and, since b: is not a random function, the response function is simply (iw-a(k, CO)}-'. 

This will be denoted by Q - l ( k ,  U ) .  The reality condition gives 

U )  = Q ( - k ,  - U ) *  

For the full equation the response function is obtained from equation (4) in the form 
of an infinite series 

4 I ,W(k,w; k l , U l ,  k z , w z ) W b % ;  -k1, - w1, k,w)P(k,, 01) +-- 2 
V 2  T 2  R2c21Q2Ql" 

Here Q, denotes Q(k , ,  w l )  etc. Many terms have dropped out because of the homogeneity 
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conditions and the vanishing of (g (k ,  U ) ) .  We have also assumed that (e,(K, U ) )  is zero; 
in fact, it follows that, since both ( f ( k ,  w ) )  and (g(K,  w ) )  are zero, we have (e#, U ) )  
zero for all n. 

The diagrammatic representation of the series is easily obtained; we simply take each 
diagram of figure 1 and erase one g in all possible ways (if there are no g’s to erase then we 
get zero) ; we then average the remaining random functions. We thus obtain 

+ 2  + 2  

+ 4  2 + 22>j+... 
Figure 2 

The diagrams involving ( g )  or (el) clearly give zero, while the last diagram shown gives 
zero because M(0,O; kl,wl, k2,w2) vanishes. 

If the zeroth-order equation gives the exact response function then the terms of order 
A, A2, etc. in the above series must all vanish. This gives 

Rl(k, U )  = 0 
4 

V 2  T 2  
M ( k , w ;  kl,% k2,w2)Wk2,wz;  -K1, - w1, k,w)lBtk,, 4 

QlQl*Q2 
c R2(k, w )  = - - 

and equations for R3, R4, etc., which will be considered later. 

the corresponding spectral function is seen to be 
The  two-velocity correlation function is easily found for the zeroth-order equation ; 

B(k, w )  

Q ( k ,  w)Q*(k, U)’ 

For the full equation we again obtain the result in the form of an infinite series by multiply- 
ing together two series of the form (4), one for v(K, w )  the other for v(-k, -U), and carrying 
out the averaging over all realizations of the random functionf. In  this way we get 

1 < g ( k  -k, - w )  > 

M(k,w; kl ,Ul ,  k2,w2) (g(K1, W l W 2 ,  w2)g( -k ,  - U ) >  

U(k, U )  = l3@, U> +A (- 

11 

O(k, w)R*(k, U )  VT Q(k ,  w)Q*(k, w )  

1 +-c V2T2 aa*a,C2, 

+( 
+A2 ( 

similar terms with k, w 

replaced by - k, - w 

R2(k, w)P(k, w )  1 <e2(k, w>g( -4 - U)> 

a a* +- 
Q2R* VT 

2 
V 3  T 3  

+- 2 M( - K ,  - w ;  kl‘ ,wl’ ,  k2’,w2’)M(k2‘,w2’; k3’,w3’, k4’,w4’) 

x <g(k ,  w)g@1’, W l ‘ M k 3 ’ ,  w 3 ‘ W 4 ’ ,  0 4 ’ ) )  

x (RO*R1,L&rQ3,Q4t) - 
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’ V T  QQ” 

+ o(x3). 
I +terms involving expectation values of the form (ggel ) 

Again the diagrammatic representation of the terms is easily found. 

Figure 3 
Here it is understood that the line on the extreme left of each diagram carries a wave 
number (k, w )  while that on the right has wave number (4, -U).  It is also understood that 
the expectation value of the product of all the random functions appearing in a diagram is 
to be taken; later on a way of indicating this explicitly will be introduced. 

If the zeroth-order term of this expansion gives the exact correlation function, then the 
coefficients of A, X2, etc., must all vanish. This will give rise to equations relating expectation 
values of products of the functions g and e? and also the quantities R,. These relations do 
not appear to determine uniquely the functions g, e, and we are at liberty to impose further 
conditions. The  conditions which seem to lead to the simplest results are 

where A,(k, U )  are non-random functions. This is the only case we shall consider here. 
These additional conditions imply that the expectation value of any product of g and 

e, may be written in terms of the functions A, and ,8 by using the pairing property. From 
this it will be seen that the equations resulting from the vanishing of the coefficient of AZn 
in the series (6) will determine A2, in terms of A,, A4, ... A2,- ,  and R2, R4, ... R2,. 
The  equations resulting from series ( 5 )  for the response function are seen to relate R2, to 
A2n-2, ... A,, ,!3) R2n-2,  ... R,. We are thus able to solve the equations successively to find 
A2, A4, ...; R2, R4, ... in terms of cc and ,8. (It may be seen that R, is zero for n odd.) 
Actually, only the real part of A,(k, w )  is determined but this is sufficient. 

For A2 we obtain 

B ( h  w){Az(k,  0) +A,( - A ,  - U>> 

2 w , w ;  J Z l , W l ,  k z , w 2 ) W - k -  w ;  -h, - 
= --c 

V T  R, R, Q,*R,* 
-k2, - 4,8(h, w1),!3@2, w2) 
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From this we calculate P(k, w )  to second order in h since we have 

hence 
f(k, w )  = g(h, 0) +A2A,(k, w ) g ( k  0) +O(h4) 

h(k ,  U )  = P(k,  0) +A2{A,(k, w )  +A,( -4 - w)lP(k  +W4) 

x P ( h ,  w,)P(k,, w2) x ( Q 1 ~ 1 * & Q 2 * ) - 1  

+ 0 ( ~ 4 ) .  

T o  second order in h we have then, in the limit as V, T -+ 03, the following equations 

A2 k2P(hl, w,)P(k - k,, 0 - 4 
p ( k ,  = h(k ,  

+ 2(27) 2 j dk, 1 dwl QIQ1*Q(k - k,, - wl)Q*(k - A,, - 
the correlation function and response function being given in terms of a and ,d by the 
relations P ( k  w )  - P(k, w )  U(k,  w) = - 

S(k, 0) = ~ - 

Q ( k ,  w)Q*(k ,  w )  

~ ( k ,  w )  iw-a(k, U)' 

{iw-a(k, w)}{iw-x(k, U)>* 

1 - 1 

These equations are exactly the same as those of the direct-interaction approximation 
when expressed in terms of S and U. 

We now extend the diagram technique to show that expectation values of products of 
random functions are to be taken. As mentioned above, since e, differs from g only by a 
factor which is a non-random function, it follows immediately that the pairing rule applies 
to an expectation value of any product of theg and the e,. For example 

( e Z ( k l ,  wl)e4(k2, w Z ) g ( k 3 ,  W3)g(k4, w4) ) 
= wl)e4(k2, w2)> (g(k., w 3 k ( k 4 ,  w4) > 

+ 
+ < e 2 ( k 1 ,  w l ) d k 4 ,  w 4 )  > (e4(k2,w2)g(k3, 

wl)g (k3 ,  w3) > ( e 4 ( k 2 ,  w2) i ! (k4 ,  w4))  

>* 

In  the diagrams, the pairing of two random functions will be indicated by joining these 
with a broken line. Thus, to show that the expectation value is to be taken in a diagram, we 
join with broken lines pairs of line ends corresponding tog, e, in all possible ways. Usually, 
many such pairings give the same contribution. T o  illustrate this we give the diagrammatic 
form of the equations for R, and A2 

--@- + 4 

+ +-- -- + similar diagrams with insertions ( in r ight-hand line ) 

t = 0 .  

Figure 4 
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The second and third diagrams in the second equation cancel as a consequence of the first 
equation. Clearly, the broken line joining two g's gives a factor VT/3 in the corresponding 
term. 

To  simplify the diagrams further and to show the correspondence with the formalism of 
Wyld we represent the two-velocity correlation function U(K, w )  by a wavy line, i.e. we 
replace 

by -vr . - -- -- 

Figure 5 
The equations may then be represented as follows 

o((k,w) = -vk2 t 42 t 3 . .  

Figure 6 
Equating to zero the coefficients of h4 in the series ( 5 )  and (6) enables one to write 

down the terms in h4 for CI and p. The procedure is straightforward but rather tedious and 
is not reproduced here. The  final result may be written simply in diagram form 

d ( k , d  = -vk2+42 ,""""., 

Figure 7 
If we introduce the function (iw + v P ) - ~  and represent it by a thin line, then the equat- 

ions relating the response and correlation functions to CI and ,Ll may be represented as 
follows : 

- - @ 
Figure 8 

where R denotes ( X2R, + ...). 
It is interesting to note that, if one uses the perturbation series of Wyld to obtain 

expansions for CI and ,Ll and retains only those diagrams which are irreducible in the sense 
that the internal lines contain no insertions, then these diagrams are just those appearing in 
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figure 7 up to fourth order. Whether the higher-order diagrams of our series are also 
irreducible in this sense has not been ascertained. The diagrams are not irreducible in the 
usual sense since they may contain vertex corrections. 
2.4. Inclusion of the vertex function 

Finally, we indicate briefly how the procedure given above may easily be extended to 
give equations involving a ‘dressed’ vertex function as well as the response and correlation 
functions. To derive these we rewrite equation (1) in the form 

iwv(k, w )  = a(k, w)o(k,  w )  +g(k,  w )  +R(k,  w)o(k,  w )  

h 
V T  

+e@,  w )  +- 2 K ( k , w ;  kl,w1, k 2 , ~ & 0 1 ,  w&&, w d  

+- 2 L(k,w; kl ,Ul ,  ~ Z , w z ) ~ ( k l >  w,)v(kz, w2) 
h 

V T  
where 

R(k,  U )  = h2R2(k, W) +h4R4(k, U )  + ... 
e(k ,  w )  = h2e2(K, w )  +h4e4(k, U )  + ... 

L(k,w; h w 1 ,  h w 2 )  = h2Lz(k,w; b J 1 ,  k,,wz) +X4L4(k,w; JZ1,01, kz,wz) + ‘ a ’  

and 
~ ( k ,  U )  +R(k, W) = -vk2 

g ( h  w )  + e ( k  W) = f(k W) 

K ( k , w ;  k1,% k2,wz) +L(k,w; k19w1, kz,wz) =-M(k,w; b J l ,  ~ z , w z ) .  

K and L are symmetric in K1, w1 and kz, w2 and conserve ‘four-momentum’. 
A perturbation series for v(k, W) may be generated as before starting from the zeroth- 

order approximation g(K, w)/Q(K, U ) .  If the vertex K is represented by a small black 
square, then the corresponding diagrams are 

- + A --< + k [-. 

Figure 9 

As before, we derive from this series the expansions for the response function and 
two-velocity correlation function and we impose the conditions that all except the zeroth- 
order terms of these series should vanish. In addition, we construct a series for the vertex 
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function defined by 

191 

The  corresponding diagrams are obtained from those of figure 9 by erasing two g's in all 
possible ways, together with the lines connecting them to the rest of the diagram, and 
averaging the remaining g's and en's. Also the line on the extreme left of the diagram is 
omitted. 

It is seen that the zeroth-order term for. this quantity is K(k, U ;  k, ,  ol, k,, 0,). We 
require, as usual, that all the higher-order terms are zero, thereby obtaining equations for 
L,, L4, etc. Up to order A4 the equations for a,  p, and Kare  as follows: 

+ ... 

+ ... + 162 

+... . I + diagrams obtained by rotating these through 120" and 240" 

Figure 10 

It will be observed that the equations for and K are the same as those given by Wyld. 
The  equation for U replaces the one for the second type of vertex in Wyld's theory. It is 
important to observe that the diagrams appearing in the series for U are not all irreducible 
(in the usual sense), for example, the first diagram of order h4 is not. This has the effect of 



192 R. Phythian 

avoiding the double counting of certain diagrams for the response function when the 
equations are iterated to generate an expansion in terms of the ‘bare’ response, correlation 
and vertex functions. It was for precisely this purpose that Wyld sought to replace the 
equation for the response function by one for a second sort of vertex from which it could be 
calculated by means of a ‘Ward’ identity. In  the equation given by Lee, the response 
function is expressed in terms of diagrams which are irreducible but which contain the 
‘bare’ vertex in higher-order terms. 

3 .  Conclusion 
A self-consistent perturbation procedure has been demonstrated which leads directly to 

equations relating the response function and the two-velocity correlation function (and 
vertex function) without the necessity of analysing diagrams of arbitrarily high order, I t  
differs from other theories based on a self-consistency procedure in yielding the direct- 
interaction approximation as the simplest non-trivial approximation. 

The  convergence properties of the series appearing in the final equations are completely 
unknown (the same is true of similar series appearing in quantum theory), and numerical 
solution of the equations for comparison with experiment has been limited to the direct- 
interaction approximation because of the complexity of terms beyond second order. 
Reasonable agreement with experiment has been found by Kraichnan ; however, recently 
it has been found that experimental evidence seems to favour the Kolmogorov theory 
which gives a rather different spectral function. For details the papers of Kraichnan 
(1958, 1964) should be consulted. 

It would be of interest to examine the relative magnitudes of the first few terms of the 
series for a simple system to which the above theory can be applied and for which the 
calculations involved can more easily be carried out. A suitable system might be, for 
example, the damped anharmonic oscillator with Gaussian forcing term. 

Another problem is that of the realizability of approximations for the correlation 
function, i.e. the requirement that the approximation to the correlation function which 
emerges from some calculation scheme should have the properties of a correlation function. 
As yet, this has only been established for the direct-interaction approximation. 
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